Showing posts with label security. Show all posts
Showing posts with label security. Show all posts

Protecting against CSRF attacks in ASP.Net MVC

CSRF attacks are one of the many security issues that web developers must defend against.  Fortunately, ASP.Net MVC makes it easy to defend against CSRF attacks.  Simply slap on [ValidateAntiForgeryToken] to every POST action and include @Html.AntiForgeryToken() in every form, and your forms will be secure against CSRF.

However, it is easy to forget to apply [ValidateAntiForgeryToken] to every action.  To prevent such mistakes, you can create a unit test that loops through all of your controller actions and makes sure that every [HttpPost] action also has [ValidateAntiForgeryToken]. 

Since there may be some POST actions that should not be protected against CSRF, you’ll probably also want a marker attribute to tell the test to ignore some actions.

This can be implemented like this:

First, define the marker attribute in the MVC web project.  This attribute can be applied to a single action, or to a controller to allow every action in the controller.

///<summary>Indicates that an action or controller deliberately 
/// allows CSRF attacks.</summary>
///<remarks>All [HttpPost] actions must have 
/// [ValidateAntiForgeryToken]; any deliberately unprotected 
/// actions must be marked with this attribute.
/// This rule is enforced by a unit test.</remarks>
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]
public sealed class AllowCsrfAttacksAttribute : Attribute { }

Then, add the following unit test:

[TestMethod]
public void CheckForCsrfProtection() {
    var controllers = typeof(MvcApplication).Assembly.GetTypes().Where(typeof(IController).IsAssignableFrom);
    foreach (var type in controllers.Where(t => !t.IsDefined(typeof(AllowCsrfAttacksAttribute), true))) {
        var postActions = type.GetMethods()
                                .Where(m => !m.ContainsGenericParameters)
                                .Where(m => !m.IsDefined(typeof(ChildActionOnlyAttribute), true))
                                .Where(m => !m.IsDefined(typeof(NonActionAttribute), true))
                                .Where(m => !m.GetParameters().Any(p => p.IsOut || p.ParameterType.IsByRef))
                                .Where(m => m.IsDefined(typeof(HttpPostAttribute), true));

        foreach (var action in postActions) {
            //CSRF XOR AntiForgery
            Assert.IsTrue(action.IsDefined(typeof(AllowCsrfAttacksAttribute), true) != action.IsDefined(typeof(ValidateAntiForgeryTokenAttribute), true),
                            action.Name + " is [HttpPost] but not [ValidateAntiForgeryToken]");
        }
    }
}
typeof(MvcApplication) must be any type in the assembly that contains your controllers.  If your controllers are defined in multiple assemblies, you’ll need to include those assemblies too.

CAPTCHAs do not mitigate XSS worms

One common misconception about web security is that protecting important actions with CAPTCHAs can prevent XSS attacks from doing real damage.  By preventing malicious code from scripting critical tasks, the idea goes, XSS injections won’t be able to accomplish much.

This idea is dangerously wrong. 

First of all, this should not even be considered except as a defense-in-depth mechanism.  Regardless of whether the actions you care about are protected by CAPTCHAs, XSS attacks can create arbitrary UI on your pages, and can thus make “perfect” phishing attacks.

Also, even with CAPTCHAs, an XSS injection can wait until the user performs the critical action, then change the submitted data to the attacker’s whim.

For example, if Twitter took this approach to prevent XSS injections from sending spammy tweets, the attacker could simply wait until the user sends a real tweet, then silently append advertising to the tweet as the user submits it and fills out the CAPTCHA.

However, there is also a more fundamental issue.  Since the injected Javascript is running in the user’s browser, it simply display the CAPTCHA to the user and block all page functionality until the user solves the CAPTCHA.  The attacker can even put his own text around the CAPTCHA to look like a legitimate security precaution, so that the (typical) user will not realize that the site has been compromised.  (that could be prevented by integrating a description of the action being performed into the CAPTCHA itself in a way that the attacker can’t hide)

I haven’t even mentioned the inconvenience of forcing all legitimate, uncompromised users to fill out CAPTCHAs every time they do anything significant.

In summary, CAPTCHAs should only be used to prevent programs from automatically performing actions (eg, bulk-registering Google accounts), and as a rate-limiter if a user sends too many requests too quickly (eg, getting a password wrong too many times in a row).

XSS can only be stopped by properly encoding all user-generated content that gets concatenated into markup (whether HTML, Javascript, or CSS)